Homology model building of Hho1p supports its role as a yeast histone H1 protein

نویسندگان

  • Andreas D. Baxevanis
  • David Landsman
چکیده

Biochemical studies to date have not been able to identify the linker histone H1 protein in the budding yeast Saccharomyces cerevisiae. Database homology searching against the complete yeast genome has identified a gene, HHO1, (or YPL127C, formerly LPI17) which encodes a protein that has two regions that show similarity to the pea histone H1 globular domain. To determine whether Hho1p can assume the shape of an H1 protein, homology model building experiments were performed using the structure of chicken histone H5 globular domain as the basis for comparison. A statistically significant match between each of the two globular domains of Hho1p and the chicken histone H5 structure was obtained, and probability values indicate that there is a less than 1 in 100 chance that such a match would be the result of a random event. These findings support the proposal that Hho1p acts as an "H1 dimer" and could be responsible for the decreased linker DNA length observed between nucleosomal core particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin.

In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detect...

متن کامل

Histone H1 of Saccharomyces cerevisiae inhibits transcriptional silencing.

Eukaryotic genomes contain euchromatic regions, which are transcriptionally active, and heterochromatic regions, which are repressed. These domains are separated by "barrier elements": DNA sequences that protect euchromatic regions from encroachment by neighboring heterochromatin. To identify proteins that play a role in the function of barrier elements we have carried out a screen in S. cerevi...

متن کامل

The effect of aspirin on the interaction of histone 05 and 05-DNA

The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...

متن کامل

Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers.

The histone deacetylase domain of almost all members of higher eukaryotic histone deacetylases already identified (HDAC family) is highly homologous to that of yeast RPD3. In this paper we report the cloning of two cDNAs encoding members of a new family of histone deacetylase in mouse that show a better homology to yeast HDA1 histone deacetylase. These cDNAs encode relatively large proteins, pr...

متن کامل

Saccharomyces cerevisiae Linker Histone—Hho1p Maintains Chromatin Loop Organization during Ageing

Intricate, dynamic, and absolutely unavoidable ageing affects cells and organisms through their entire lifetime. Driven by diverse mechanisms all leading to compromised cellular functions and finally to death, this process is a challenge for researchers. The molecular mechanisms, the general rules that it follows, and the complex interplay at a molecular and cellular level are yet little unders...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • In silico biology

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 1998